

Micro Adaptive Flow Control

Dr. Richard Wlezien
Tactical Technology Office
DARPA Tech 99

MAFC

MICRO

Controlling large scale flow behavior using small scale/low energy

ADAPTIVE

actuation

FLOW

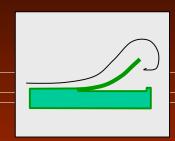
CONTROL

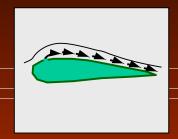
ENABLES A SPECTRUM OF MILITARY APPLICATIONS

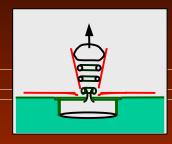
Aircraft

Engines

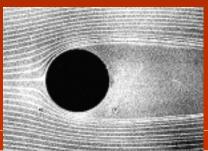
Munitions

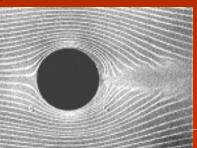


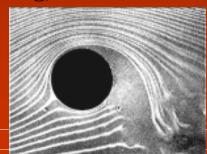

Maritime



Enabling Generic Actuator Concepts


MEMS/Smart Materials


Pulsed Blowing


SyntheticJet

Flow Around a Cylinder

Synthetic Jet Closes Wake, Eliminates Form Drag, Controls Circulation

Program Goals

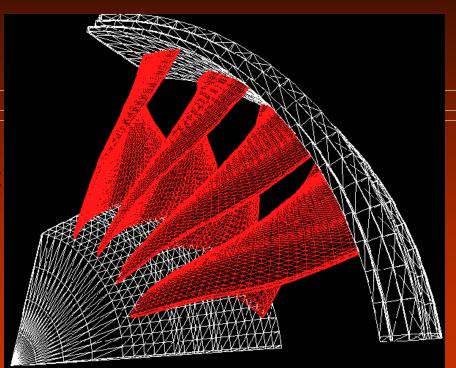
- Demonstrate large scale flow control with small actuators
- Demonstrate robust control under real flow conditions
- Achieve radical performance enhancements with MAFC

Program Strategy

- Identify System Level Application
- Develop MAFC Concept
- Design and develop actuators and controllers
- Validate MAFC performance
- Integrate and demonstrate system

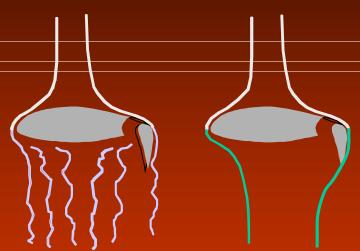
Current Status

- Phase II Tech. Development &
 Feasibility Demonstrations
 - Radical propulsion system performance
 - Aerodynamic tailoring for flight controls and performance
 - Precision munitions trajectory control

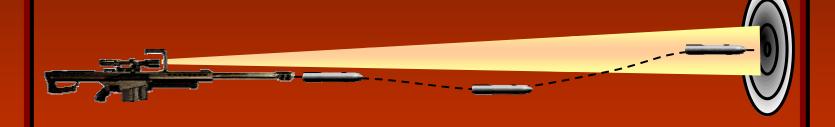

Aspirated Compressor

Conventional Rotor Blading 3 Stages

Aspirated Rotor Blading
1 Stage


Aspirated Rotor with Tip Shroud
Pressure Ratio = 3.8

V-22 Lift Enhancement


Close wake with flow control on flaps to reduce downwash and increase V-22 lifting capacity 30%

Munitions

Lutronix - Range Extended
 Adaptive Munition

Fins steer 50 cal munition to reduce wind drift and ballistic drop for increased accuracy at longer ranges

Future

- Planning BAA for Fall 1999
- Develop and demonstrate technical feasibility
 of MAFC concept
 - System level realizability
 - System level demonstration of radical performance
- Munitions, Maritime, Aerodynamics, Engines
- DARPA is interested in hearing from the community as to potential applications and approaches.